skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Guzmán, Andrés E"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Context.Traditionally, supersonic turbulence is considered to be one of the most likely mechanisms slowing the gravitational collapse in dense clumps, thereby enabling the formation of massive stars. However, several recent studies have raised differing points of view based on observations carried out with sufficiently high spatial and spectral resolution. These studies call for a re-evaluation of the role turbulence plays in massive star-forming regions. Aims.Our aim is to study the gas properties, especially the turbulence, in a sample of massive star-forming regions with sufficient spatial and spectral resolution, which can both resolve the core fragmentation and the thermal line width. Methods.We observed NH3metastable lines with the Very Large Array (VLA) to assess the intrinsic turbulence. Results.Analysis of the turbulence distribution histogram for 32 identified NH3cores reveals the presence of three distinct components. Furthermore, our results suggest that (1) sub- and transonic turbulence is a prevalent (21 of 32) feature of massive star-forming regions and those cold regions are at early evolutionary stage. This investigation indicates that turbulence alone is insufficient to provide the necessary internal pressure required for massive star formation, necessitating further exploration of alternative candidates; and (2) studies of seven multi-core systems indicate that the cores within each system mainly share similar gas properties and masses. However, two of the systems are characterized by the presence of exceptionally cold and dense cores that are situated at the spatial center of each system. Our findings support the hub-filament model as an explanation for this observed distribution. 
    more » « less
  2. null (Ed.)
    ABSTRACT We present ALMA 3 mm molecular line and continuum observations with a resolution of ∼3.5 arcsec towards five first hydrostatic core (FHSC) candidates (L1451-mm, Per-bolo 58, Per-bolo 45, L1448-IRS2E, and Cha-MMS1). Our goal is to characterize their envelopes and identify the most promising sources that could be bona fide FHSCs. We identify two candidates that are consistent with an extremely young evolutionary state (L1451-mm and Cha-MMS1), with L1451-mm being the most promising FHSC candidate. Although our envelope observations cannot rule out Cha-MMS1 as an FHSC yet, the properties of its CO outflow and SED published in recent studies are in better agreement with the predictions for a young protostar. For the remaining three sources, our observations favour a pre-stellar nature for Per-bolo 45 and rule out the rest as FHSC candidates. Per-bolo 58 is fully consistent with being a Class 0, while L1448 IRS2E shows no emission of high-density tracers (NH2D and N2H+) at the location of the previously identified compact continuum source, which is also undetected in our observations. Thus, we argue that there is no embedded source at the presumptive location of the FHSC candidate L1448 IRS2E. We propose instead that what was thought to be emission from the presumed L1448 IRS2E outflow corresponds to outflow emission from a nearby Class 0 system, deflected by the dense ambient material. We compare the properties of the FHSC candidates studied in this work and the literature, which shows that L1451-mm appears as possibly the youngest source with a confirmed outflow. 
    more » « less